ISBS '92
PROCEEDINGS

10th symposium of the International Society of Biomechanics in Sports
A RELATIONAL DATABASE FOR QUANTITATIVE BIOMECHANICAL DATA ANALYSIS

M. D’Amico¹,², G. Di Fabbrizio¹ and G.C. Santambrogio²,³

(1) Centro di Bioingegneria e Tecnologie Biomediche
Fondazione Papa Paolo VI Pescara - Italy
(2) Centro di Bioingegneria - Politecnico and Pro Juventute Fnd. I.R.R.C.S. Milano - Italy
(3) Politecnico di Milano - Dipartimento di Bioingegneria - Milano - Italy

INTRODUCTION

Multifactorial movement analysis is today extensively adopted, both in sports and in clinical applications. In fact the detection of human movement biomechanical variables is today well supported from a technological point of view, and a number of very sophisticated motion analysers are able to provide a complete set of data for three dimensional representation of any complex motor performance. This can lead to a kind of analyses that would have been considered unthinkable only a few years ago because of the large amount of time required by not automatic systems to obtain the data. In fact nowadays it is not so difficult to acquire data in order to study the variations in the biomechanical performances of a set of athletes after a special training period, or to perform comparisons to study the differences between various classes of athletes. Conversely the problem to face is how to manage the enormous quantity of data available for each subject, and how to perform, taking into account the motor pattern morphology, a statistical analysis that could involve for each variable a point to point comparison between different groups of data. The aim of this paper is to describe a special developed integrated software package including a relational data base manager and a signal processing algorithm for the management of quantitative and detailed statistical comparison among different kinematic and dynamic patterns.

METHODOLOGY

As mentioned above the integrated software package has been developed with the aim of allowing a point to point statistical comparison taking into account a Multifactorial approach. The Multifactorial approach involves the analysis of kinematic, dynamic and electromyographic variables that can be directly recorded (by means of motion analysers, force platforms, electromyographs etc.) or derived (as for instance velocity, acceleration, joint torque, power etc. by means of signal processing algorithm, mathematical body model etc.). The application of the statistical comparison approach can be used in two main different mode: the Intra-individual and Inter-individual mode. For each mode, two different purpose can be pointed out: the first involves directly sport performances and training, the second involves the field of medicine and in our case that of sport traumatology and sport rehabilitation.

The Intra-individual mode is adopted when the matter of interest is to study the
single subject variations along time. For instance, for the sport purpose a trial set of an athlete can be analyzed before and after a special training period in order to monitoring the enhancement of a particular performance. This allow to establish quantitatively the effectiveness of the training with respect to the global results and/or the various variables of interest. The same considerations, of course, are valid for the monitoring of a particular physical therapy when a rehabilitation period after a trauma is necessary.

The *inter-individual* mode is adopted when the matter of interest is to study a subject characteristics with respect to other subjects or classes of subjects. For instance in this mode the method allows to make comparison between top level athletes belonging to the same speciality in order to study the different motor control strategies adopted by each one. In a wider use adopting this integrated software could be very interesting to build large classes for various specialities. As an example in track and field could be considered a data base in which could be present several classes relative to sprinters, jumpers, long distance runners etc., and this could be the way to study the biomechanical difference between the various classes. After these considerations, the translation and the application in the clinical field for a diagnostic point of view becomes very evident. In fact the method allows a clinician to study a subject with a certain trauma with comparison to the class of normal subject and to focus his attention only to those variables which present a statistical significant difference. Moreover once some classes of pathologies have been built the comparison could be extended also in order to classify the particular pathology that affects the subject under study.

![Signal Processing Algorithm Diagram](image)

Fig. 1 Data Flow and Processing for the two considered modes
In order to obtain such characteristics the software implementation has been subdivided.
from a functional point of view, into two main parts that is the specially developed signal
processing algorithm and the Relational Data Base Management System (RDBMS) engine.
Figure 1 illustrates the global procedure block-scheme describing the various steps the
algorithm passes through for both the Intra-individual and the Inter-individual modes. The
dashed box enlighten the signal processing algorithm role, i.e. it is devoted to treat the data
and to perform all the computations necessary to allow the statistical comparison, while the
RDBMS engine is devoted to the data file organisation and management in order to allow
the data collection, that is the data arrangement into homogeneous groups containing all
those typical series provided by individuals with similar anthropometric features, age, sex
kind of performance etc. associated with a given locomotor state. The detailed description of
the mathematical procedure has been presented in the previous symposium and can be found
in D'Amico et al. 1991, anyway in order to better understand the way in which the global
procedure acts the meaning of each step will be herein briefly summarised.

RDBMS engine and Signal Processing

The integrated software package for the RDBMS engine and the Signal Processing is PC
based (386-486 CPU) and it presents the following features: it has been developed in the
Microsoft Windows environment release 3.1 with standard (SAA & CU) graphic interface.
the language adopted has been the C++, with Local Area Network capabilities, it allows
images compression (J-PEG standard) and it is dBIII - dBIV - Fox Base - Clipper
compatible. The RDBMS model has been chosen because it permits a high level of
flexibility for the kind of queries that the user can define in order to select the various set of
trials. The query is the tool given to the user to make an interrogation to the RDBMS in
order to obtain files of data with a particular characteristic or more characteristics linked
with a relationship defined by the user. The RDBMS answers to a query selecting all the
files present in the Data Base belonging to that class defined by that query.

Each kind of performance must be characterised by a data input fixed protocol, in order to
allow the correct data collection and a consistent statistical comparison. Anyway all the
protocols must consider the following steps.

a) Data Acquisition: in this section are considered the data acquired (when the
Multifactorial approach is adopted) by using a system for motion analysis involving
kinematic (3D co-ordinates of a number of body landmarks), dynamic (the three
orthogonal components of the ground reaction force generated by a force platform during
the stance-phase of a generic sport gesture) and electromyographic measurement giving
information about the activities of the muscles contraction and motor-control
performance.

b) Pretreatment: given the above variables a signal processing is performed in order to
obtain other variables of interest such as velocities and acceleration of each body
landmarks; angles, angular velocities, angular accelerations between body segments; joint
moments etc.

To all these numerical data other kind of information are added such as: anthropometric
measurements (body weight, bone measurements etc.); personal data (age, sex, address
etc.); images (picture, x-ray measurements when necessary etc.); kind of performance
recorded (sprint, jump, run etc.). This additional data can be subsequently used to define
a query (i.e. find all the male subject between 15-20 years old, 65-75 Kg. of body weight,
160-170 cm. tall, performing the long jump).
Taking into account the enormous amount of data involved in each set of trials, it is evident how the RDBMS engine plays a fundamental role in order to manage the heterogeneous set of data and to allow the selection of the trial sets of interest for each subject by allowing user's queries.

c) Check of Steady State: after the user's query and the Trial Set collection, a way to guarantee a constant experimental uniformity of the various trials is mandatory to perform a reliable and consistent comparison. The criteria for evaluating such uniformity depend in general on the movement to be analysed. A Steady State criterion requires that the analysed performance can reasonably be supposed in a range defined as stationary condition (Santambrogio 1989). It is accomplished both on ground reaction forces and on acceleration (of near baricentric body landmark) in the advancing direction.

d) Normalisation: in order to compare data sets relative to different trials, a normalisation both in time and in amplitude is mandatory. A particular attention must be dedicated to this procedures. In fact they could be heavily affected by the filtering technique used, especially on the derivatives. To this aim as described in D'Amico et al. 1991, has been used the LAMBDA procedure (D'Amico and Ferrigno 1990), that has demonstrated to be a very accurate and powerful tools.

d) Data stratification and Testing: after having obtained the normalised series the data stratification (i.e. the stratified averaging of the original data) is performed by computing for each i-th element of the series the stratified mean values (μ) and the related standard deviation (σ) (D'Amico et al. 1991). The difference occurring between two typical groups of data can be estimated by applying a two-tailed t-test, at 0.01 and 0.05 level of significance, to each element of the series (Santambrogio 1989). The statistical results are synthetised by a merit parameter named IED (D'Amico et al. 1991)

CONCLUSIONS

To present examples of results is beyond the aim of this paper in which only the method and the software characteristics are presented. The proposed procedure has been developed in order to offer a wide possibility of use both in sports and in the clinical field as described above. With this procedure we claim the adoption of a point to point comparison for each considered variables, contrarily the purely visual interpretation of the pattern morphology of the biomechanical variables or the statistical analysis of just a limited number of parameters for each variables. It is in fact in our opinion the proper method to provide a complete description of the motor performance and of the differences occurring between either a single subject or groups of subjects.

REFERENCES

